On Kakeya-Nikodym type maximal inequalities
نویسندگان
چکیده
منابع مشابه
Finite field Kakeya and Nikodym sets in three dimensions
We give improved lower bounds on the size of Kakeya and Nikodym sets over Fq. We also propose a natural conjecture on the minimum number of points in the union of a not-too-flat set of lines in Fq, and show that this conjecture implies an optimal bound on the size of a Nikodym set. Finally, we study the notion of a weak Nikodym set and give improved, and in some special cases optimal, bounds fo...
متن کاملA Note on the Kakeya Maximal Operator
In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.
متن کاملKakeya-nikodym Averages and L-norms of Eigenfunctions
We provide a necessary and sufficient condition that Lp-norms, 2 < p < 6, of eigenfunctions of the square root of minus the Laplacian on 2-dimensional compact boundaryless Riemannian manifolds M are small compared to a natural power of the eigenvalue λ. The condition that ensures this is that their L2 norms over O(λ−1/2) neighborhoods of arbitrary unit geodesics are small when λ is large (which...
متن کاملBOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS ASSOCIATED WITH k-PLANES
A (d, k) set is a subset of Rd containing a translate of every k-dimensional plane. Bourgain showed that for k ≥ kcr(d), where kcr(d) solves 2kcr−1 + kcr = d, every (d, k) set has positive Lebesgue measure. We give a short proof of this result which allows for an improved Lp estimate of the corresponding maximal operator, and which demonstrates that a lower value of kcr could be obtained if imp...
متن کاملA Recursive Bound for a Kakeya-type Maximal Operator
A (d, k) set is a subset of R containing a translate of every kdimensional plane. Bourgain showed that for 2 + k ≥ d, every (d, k) set has positive Lebesgue measure. We give an L bound for the corresponding maximal operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6846